更多>>精华博文推荐
更多>>人气最旺专家

张锐

领域:中国发展网

介绍:目前我们还在筹划“咨询服务”升级,之前的只能发起单个悬赏提问,而不能对某一方面的若干提问发起付费咨询。...

陈无咎

领域:华夏生活

介绍:(例如、就收捡购物车篮说看起是一项最简单的劳动岗位,实际上这个岗位的任务也有很多,除收捡购物车篮外,还要替换其它岗位的临时活动、随时监视员工的纪律、观察卖场的各种现象等等。乐橙手机游戏,乐橙手机游戏,乐橙手机游戏,乐橙手机游戏,乐橙手机游戏,乐橙手机游戏

lc8注册
本站新公告乐橙手机游戏,乐橙手机游戏,乐橙手机游戏,乐橙手机游戏,乐橙手机游戏,乐橙手机游戏
x4w | 2019-01-23 | 阅读(920) | 评论(562)
野生的野马已经灭绝,我国于20世纪80年代从欧美重新引入野马,经饲养后放归野外。【阅读全文】
乐橙手机游戏,乐橙手机游戏,乐橙手机游戏,乐橙手机游戏,乐橙手机游戏,乐橙手机游戏
2it | 2019-01-23 | 阅读(44) | 评论(67)
因盾构穿越距离达到1140m,上述要求难以满足。【阅读全文】
v2l | 2019-01-23 | 阅读(492) | 评论(8)
这就要求我们()①解放思想,破除一切传统观念②在思维过程中,要进行合理想象,大【阅读全文】
jf3 | 2019-01-23 | 阅读(715) | 评论(762)
他一生著述宏富,著作涉及政治、经济、哲学、历史、语言学、宗教及文化艺术等,达1400万字,结集为《饮冰室合集》。【阅读全文】
plm | 2019-01-23 | 阅读(239) | 评论(572)
主体:分析成绩缺憾,总结经验教训。【阅读全文】
qi1 | 2019-01-22 | 阅读(315) | 评论(359)
正方观点反方观点学生辩论会没有过时已经过时艰苦奋斗勤俭节约①是我们提倡的一种精神,并不是某一种具体的消费方式;②作为一种精神财富,任何时候都必须弘扬;③反对铺张浪费、骄奢淫逸,而不是要抑制消费。【阅读全文】
qmd | 2019-01-22 | 阅读(947) | 评论(351)
 最大值与最小值学习目标重点难点1.知道函数的最大值与最小值的概念.2.能够区分函数的极值与最值.3.会用导数求闭区间上不超过三次的多项式函数的最大值、最小值.重点:函数在闭区间上的最值的求解.难点:与函数最值有关的参数问题.1.最大值与最小值(1)如果在函数定义域I内存在x0,使得对任意的x∈I,总有______________,则称f(x0)为函数在定义域上的最大值.最大值是相对函数定义域整体而言的,如果存在最大值,那么最大值________.(2)如果在函数定义域I内存在x0,使得对任意的x∈I,总有____________,则称f(x0)为函数在定义域上的最小值.最小值是相对函数定义域整体而言的,如果存在最小值,那么最小值________.2.求f(x)在区间[a,b]上的最大值与最小值的步骤(1)求f(x)在区间(a,b)上的________;(2)将第(1)步中求得的________与______,______比较,得到f(x)在区间[a,b]上的最大值与最小值.预习交流1做一做:函数y=x-sinx,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))的最大值是______.预习交流2做一做:函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围为______.预习交流3(1)函数的极值与最值有何区别与联系?(2)如果函数f(x)在开区间(a,b)上的图象是连续不断的曲线,那么它在(a,b)上是否一定有最值?若f(x)在闭区间[a,b]上的图象不连续,那么它在[a,b]上是否一定有最值?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)f(x)≤f(x0) 惟一 (2)f(x)≥f(x0) 惟一2.(1)极值 (2)极值 f(a) f(b)预习交流1:提示:∵y′=1-cosx≥0,∴y=x-sinx在eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))上是增函数,∴ymax=π.预习交流2:提示:∵f′(x)=3x2-3a=3(x2-af(x)在(0,1)内有最小值,∴方程x2-a=0有一根在(0,1)内,即x=eq\r(a)在(0,1)内,∴0<eq\r(a)<1,0<a<1.预习交流3:提示:(1)①函数的极值是表示函数在某一点附近的变化情况,是在局部上对函数值的比较,具有相对性;而函数的最值则是表示函数在整个定义区间上的情况,是对整个区间上的函数值的比较,具有绝对性.②函数在一个闭区间上若存在最大值或最小值,则最大值或最小值只能各有一个,具有惟一性;而极大值和极小值可能多于一个,也可能没有,例如:常函数就没有极大值,也没有极小值.③极值只能在函数的定义域内部取得,而最值可以在区间的端点取得.有极值的不一定有最值,有最值的不一定有极值,极值有可能成为最值,最值只要不在端点处则一定是极值.(2)一般地,若函数f(x)的图象是一条连续不断的曲线,那么f(x)在闭区间[a,b]上必有最大值和最小值.这里给定的区间必须是闭区间,如果是开区间,那么尽管函数是连续函数,那么它也不一定有最大值和最小值.一、求函数在闭区间上的最值求下列函数的最值:(1)f(x)=-x3+3x,x∈[-eq\r(3),eq\r(3)];(2)f(x)=sin2x-x,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(π,2),\f(π,2))).思路分析:按照求函数最值的方法与步骤,通过列表进行计算与求解.1.函数f(x)=x3-2x2+1在区间[-1,2]上的最大值与最小值分别是__________.2.求函数y=5-36x+3x2+4x3在区间[-2,2]上的最大值与最小值.1.求函数在闭区间上的最值时,一般是先找出该区间上使导数为零的点,无需判断出是极大值还是极小值,只需将这些点对应的函数值与端点处的函数值比较,其中最大的是最大值,最小的是最小值.2.求函数在闭区间上的最值时,需要对各个极值与端点函数值进行比较,有时需要作差、作商,有时还要善于估算,甚至有时需要进行分类讨论.二、与最值有关的参数问题的求解已知当a>0时,函数f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29,求a,b的值.思路分析:先求出函数f(x)在[-1,2]上的极值点,然后与两个端点的函数值进行比较,建立关于a,b的方程组,从而求出a,b的值.若函数f(x)=-x3+3x2+9x+a在区间[-2,2]上的最大值为20,求它在该区间上的最小值.【阅读全文】
2my | 2019-01-22 | 阅读(479) | 评论(169)
变形缝两侧结构变形量(沉降差)对止水带的使用寿命的影响。【阅读全文】
乐橙手机游戏,乐橙手机游戏,乐橙手机游戏,乐橙手机游戏,乐橙手机游戏,乐橙手机游戏
o2p | 2019-01-22 | 阅读(376) | 评论(720)
2018年至今本人在广州市xx服装司任设计总监,该司主要经营出口时尚休闲服装。【阅读全文】
zbc | 2019-01-21 | 阅读(602) | 评论(110)
4、基于本质安全原则下的大温差管道补偿根据气象资料,四平历年最低温度为-℃,最高温度为℃,管廊内最大温差变化为℃,大温差下管道补偿方式的选择尤为重要。【阅读全文】
o1e | 2019-01-21 | 阅读(52) | 评论(521)
把大象赶到一艘大船上,看船身下沉多少,在船舷上画一条线作记号,再把大象赶上岸,往船上装石头,等船下沉到画线的地方为止。【阅读全文】
ip1 | 2019-01-21 | 阅读(778) | 评论(846)
第四单元发展社会主义市场经济;;考点突破二:市场调节固有的弊端;考点突破三:整顿和规范市场秩序;如何规范市场秩序;;热点链接:我国创新和完善宏观调控方式,先后提出区间调控、定向调控精准调控、相机调控,促进经济社会发展。【阅读全文】
gxd | 2019-01-21 | 阅读(219) | 评论(138)
 微积分基本定理学习目标重点难点1.会用定积分求曲边梯形的面积.2.直观了解微积分基本定理的含义.重点:微积分基本定理及利用定理求定积分.难点:利用定积分求较复杂的图形的面积.微积分基本定理对于被积函数f(x),如果F′(x)=f(x),则eq\i\in(a,b,)f(x)dx=__________,亦即____________=F(b)-F(a).预习交流1做一做:eq\i\in(0,1,)x2dx=________.预习交流2做一做:eq\i\in(0,π,)(cosx+1)dx=________.预习交流3议一议:结合下列各图形,判断相应定积分的值的符号:(1)eq\i\in(a,b,)f(x)dx____0(2)eq\i\in(a,b,)g(x)dx____0(3)eq\i\in(a,b,)h(x)dx____0在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引F(b)-F(a) eq\i\in(a,b,)F′(x)dx预习交流1:提示:eq\f(1,3)预习交流2:提示:∵(sinx+x)′=cosx+1,∴eq\i\in(0,π,)(cosx+1)dx=eq\i\in(0,π,)(sinx+x)′dx=sinπ+π-(sin0+0)=π.预习交流3:提示:(1)> (2)< (3)>一、简单定积分的求解计算下列各定积分:(1)eq\i\in(0,2,)xdx;(2)(1-t3)dt;(3)eq\i\in(1,2,)eq\f(1,x)dx;(4)(cosx+ex)dx;(5)eq\i\in(2,4,)t2dx;(6)eq\i\in(1,3,)eq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(1,x2)))dx.思路分析:根据导数与积分的关系,求定积分要先找到一个导数等于被积函数的原函数,再据牛顿—莱布尼茨公式写出答案,找原函数可结合导数公式表.1.若eq\i\in(0,1,)(2x+k)dx=2,则k=________.2.定积分sin(-x)dx=________.3.求下列定积分的值:(1)eq\i\in(1,2,)eq\r(x)dx;(2)eq\i\in(2,3,)eq\f(1-x,x2).微积分基本定理是求定积分的一种基本方法,其关键是求出被积函数的原函数,特别注意y=eq\f(1,x)的原函数是y=.求定积分时要注意积分变量,有时被积函数中含有参数,但它不一定是积分变量.3.定积分的值可以是任意实数.二、分段函数与复合函数定积分的求解计算下列定积分:(1)eq\i\in(2,5,)|x-3|dx;(2)sin2xdx;(3)e2xdx思路分析:被积函数带绝对值号时,应写成分段函数形式,利用定积分性质求解.当被积函数次数较高时,可先进行适当变形、化简,再求解.1.设f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,0≤x1,,2-x,1x≤2,))则eq\i\in(0,2,)f(x)dx=__________.2.(1)设f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,x≤0,,cosx-1,x0,))求f(x)dx;(2)求eq\r(x2)dx(a>0).1.分段函数在区间[a,b]上的积分可化成几段积分之和的形式,分段时按原函数的各区间划分即可.2.当被积函数的原函数是一个复合函数时,要特别注意原函数的求解,与复合函数的求导区分开来.例如:对于被积函数y=sin3x,其原函数应为y=-eq\f(1,3)cos3x,而其导数应为y′=3cos3x.三、由一条曲线和直线所围成平面图形的面积的求解已知抛物线y=4-x2.(1)求该抛物线与x轴所围成图形的面积;(2)求该抛物线与直线x=0,x=3,y=0所围成图形的面积.思路分析:画出图形,结合图形分析定积分的积分区间,同时注意面积与积分的关系.1.抛物线y=x2-x与x轴围成的图形面积为__________.2.曲线y=cosxeq\b\lc\(\rc\)(\a\vs4\al\co1(0≤x≤\f(3π,2)))与坐标轴所围成的面积为________.3.(2012山东高考)设a>0.若曲线y=eq\r(x)与直线x=a,y=0所围成封闭图形的面积为a2,则a=__________.利用定积分求曲线所围成的平面图形的面积的步骤:(1)根据题意画出图形;(2)找出范围,定出积分上、下限【阅读全文】
mye | 2019-01-20 | 阅读(758) | 评论(600)
比如对一篇的理解,如果由教师根据参考书的答案讲出,那学生只能得到一种理解,甚至根本不理解,而是教师把自己根据教参的理解强加给学生,学生即使理解也是生吞活剥地机械记忆,而不能变成自己的知识或能力从而活学活用。【阅读全文】
amt | 2019-01-20 | 阅读(414) | 评论(615)
  低分予秦岚董洁痛心落泪  两版“富察皇后”惺惺相惜  作为同样饰演过“富察皇后”的两位女演员,秦岚和董洁在《新舞林大会》的相遇让不少人感叹“缘分真奇妙”。【阅读全文】
本站互助
共5页

友情链接,当前时间:2019-01-23

利来国际w66手机版 利来国际AG旗舰厅 w66利来娱乐 w66.利来国际 利来国际最老牌
利来国际AG旗舰厅 利来最给利的网站 利来国际最给力的老牌 利来国际娱乐平台 利来国际AGq旗舰厅
利来电游官方网站 利来国际老牌博彩 利来娱乐帐户 w66.com 利来国际w66平台
利来国际旗舰版 利来国际旗舰厅app 利来国际娱乐官方 利来国际老牌博彩 利来AG旗舰厅
察雅县| 阳原县| 昌都县| 宁国市| 当阳市| 安顺市| 麟游县| 米林县| 从化市| 宁波市| 庆元县| 金门县| 吴江市| 澄城县| 苏尼特左旗| 宜兰县| 志丹县| 谢通门县| 克拉玛依市| 大余县| 元江| 宜兰市| 武穴市| 慈溪市| 梅州市| 吉隆县| 房产| 宜阳县| 三江| 峨山| 南投市| 英吉沙县| 宜阳县| 凤阳县| 双辽市| 柳林县| 静宁县| 惠州市| 湘西| 金门县| 洪湖市| http://m.41673782.cn http://m.80996147.cn http://m.01692088.cn http://m.19550737.cn http://m.70759147.cn http://m.51574542.cn